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Abstract

We propose an attack to disable the protection mechanism on a cen-
sored NXP SPC5606B, configured to use the public password, which is
the recommended secure configuration according to the datasheet. The
on-chip bootloader requires a password (depending on the security setting
either public or private) to download a secondary bootloader. On a cen-
sored chip, a flash memory read returns the same 16 byte block at address
0. Building on previous attacks on this chip (in the private password con-
figuration), we uncover several anomalies when exposed to Voltage - and
Electromagnetic Fault Injection (V-FI & EMFI), ultimately leading to the
uncensoring of the device and giving us full read/write access to its flash
memory. We establish a power consumption side channel to observe the
boot process. We uncover various anomalies of the chip when exposed to
faults, among which 1. the censorship mechanism which returns 16 byte
blocks other than the starting block 2. the chip allows download with the
private password but remains censored. Zooming in on this, we find the
offset that completely disables censorship, giving us full access to the flash
memory of the device. We confirmed this attack both on an empty test
chip we control, as well as a real life Nissan Electronic Control Unit. To
the best of our knowledge, this is the first published attack on this chip
in the public password configuration. Finally, we discuss the plausible
causes of the anomalous behavior and revisit the use and limits of fully
automated approaches to fault injection.

1 Introduction

Many embedded chips provide a mechanism to restrict read and write access to
the internal memory and registers in production. The NXP SPC5606B Micro-
controller Unit (MCU) targets automotive applications and has several protec-
tion options, which are set and stored in an area of the shadow flash. The Boot
Assist Module (BAM) is the code that handles the boot process in this MCU and
other NXP MCUs. It samples dedicated external pins (Force Alternate Boot
(FAB) and Alternate Boot Select (ABS)) upon boot to see if it should wait for
an external bootloader to be transmitted from a debug tool over either UART
or CAN. We will refer to this uploaded piece of code as the secondary bootloader
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from here on. The manufacturer can set a 64 bit private password to protect
the JTAG debug interface and flash memory. O’Flynn published attacks on the
BAM to bypass a chip configured to use the private password in [O’F20]. In this
paper, we attack the same chip configured to use the public password, which
we believe to be a more challenging scenario. A public password (0xfeedface
0xcafebeef) is hard-coded in the BAM. From now on, in accordance with the
datasheet, we will refer to the public password configuration as chip lockout.

Fault injection techniques rely upon injecting anomalies into the internal
circuits of the chip, be it optical, voltage-based (Voltage Fault-Injection (V-FI))
or electromagnetic (Electromagnetic Fault Injection (EMFI)). EMFI is a tech-
nique commonly used to inject faults into embedded systems. A high voltage is
built up over a coil positioned over the chips surface. Upon release, the electro-
magnetic emanation from the current flowing through the coil induces a current
in the chip, causing bitflips and other faulty mayhem. Its relative affordability
and ease to use (no target alterations required) make it an excellent mechanism
to inject faults onto an embedded system. In the following experiments, we use
a setup with a commercially available tool (ChipSHOUTER from NewAE Tech-
nology Inc., which costs around 3000 EUR), along with the common ARM-based
Teensy microcontroller ( 50 EUR).

1.1 Previous work

In [O’F20], O’Flynn details an attack on various SPC56xx & MPC56xx series
chips with the private password configured. In this paper, we attack what
the datasheet describes as the chip lockout scenario. [O’F20] failed disabling
censorship in this scenario, for various reasons we expand on in this paper. For
a more extensive overview of automotive firmware extraction and fault injection
techniques, including V-FI and EMFI, we refer to [dH21]. In the more recent
MPC57xx chips, the BAM has been replaced with Boot Assist Flash (BAF).
The manufacturer can disable BAF activation using external pins. Wiersma et.
al propose an attack on what seems to be such chips (referred to as ASILD2)
in [WP17]. Their attack comprises of glitching the JTAG lock bits and life cycle
encoding of the device. To the best of our knowledge, this is the first published
attack on the chip lockout configuration of the SPC5606B MCU.

Attacker model The attacks we describe in this paper require hardware ac-
cess to the device. The attacker has access to fault injection tools to alter the
execution flow of the chip and has no time restraints in their attack. This cor-
responds to the hardware fault attacker in the literature. Even though this
scenario does not entail a high-risk vulnerability (e.g., remote compromise) of
any embedded device, we still consider this important. Flash memory recovery
is a first step in reverse engineering sensitive (cryptographic) secrets which the
chip might contain. To illustrate this, we perform our attack on a Nissan Hands-
Free Module (HFM), with the public password configuration. This ECU is a
crucial part of the car keyless entry system. Hence, one might be after certain
algorithms contained in this firmware, e.g., to pair a new key to the car after
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Figure 1: The Nissan HFM with a SPC5606B chip (in chip lockout)

all keys are lost. A realistic hardware attacker use case would be a locksmith
looking to implement, e.g., an all-keys lost solution.

Contributions In this paper, we are the first to publish an attack to disable
censorship on the SPC5606B chip configured to use the public password. Given
the use of the BAM censorship mechanism in other similar chips (see [O’F20]),
we believe that this attack extends to the whole range of devices that provide
this particular censorship mechanism. Only in scrutinising a security mechanism
and understanding the ways we can compromise it, we can learn for the next
generation of chips. In this train of thought, we publish this paper.

• We scrutinise the censorship mechanism in the SPC5606B chip and ex-
pose the chip to various fault injection techniques. The results of these
experiments can help in gaining a better understanding of the impacts of
fault attacks and ultimately design more secure mechanisms.

• We expose a critical section in the power consumption side channel and
control the chip power line directly to set up an EMFI attack in order
to bypass the chip lockout configuration (i.e., public censored) of the
SPC5606B. In addition, we perform this attack on a real-life ECU (a
Nissan HFM).

• In support of reproducible research, we open source our code framework
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we developed for the EMFI attacks 1.

Responsible disclosure We disclosed our findings to the NXP Product Se-
curity Incident Response Team (PSIRT) in October 2024. They did not inde-
pendently reproduce our attack, but have no reason to believe the accuracy of
our findings. They also note that the MPC56XX family of legacy products was
not designed nor claimed to be resistant against EMI attacks or other physical
attacks.

2 Technical Background

2.1 Setup

We perform all experiments described here both on a test SPC5606B chip with a
16 MHz crystal, as on the Nissan ECU, equally running on a 16 MHz oscillator.
We communicate over the Universal Asyncronous Receiver-Transmitter (UART)
interface with a baud rate of 19200. Since the device returns a valid 16 byte
chunk of memory (i.e., that located at address 0) even when censored, we know
that censorship is no hardware encryption mechanism, but rather placed be-
tween the memory bus and physical flash memory. We use the ChipSHOUTER
from NewAE Technology Inc. to inject electromagnetic pulses on the chips sur-
face. We use the standard injection tips delivered with the ChipSHOUTER,
including 1mm & 4mm clockwise-wound (CW) and counterclockwise-wound
(CCW) tips. We created a secondary bootloader which simply outputs the
first 32 byte of the flash memory, to check if censorship has been disabled.

2.2 Boot process

Two shadow flash configuration words (Serial Sensorship Control (SC) and Cen-
sorship Control (CW)) determine the exact security configuration. Table 2.2 de-
tails the several configuration options. In this paper, we attack the chip lockout
configuration (e.g., SC && CW != 55aa). Device Censorship concerns the ac-
cess to the on-chip flash memory. In case the chip is censored, the System Status
and Configuration Module (SSCM) is responsible to uncensor the flash memory
before proceeding. The BAM code does so by writing the provided password to
the corresponding SSCM registers. To better understand the attack vectors, we
describe the devices behavior in the separate configurations.

public censored The datasheet describes this configuration as chip lockout,
indicating there is no possible way of accessing or programming the chip. Like-
wise, any attacks on this configuration in [O’F20] did not yield any success.
Here, the flash memory remains censored once the secondary bootloader ex-
ecutes. Since the password is public, we can always execute the secondary

1https://github.com/EmberCrypt/Teensy ChipShouter
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bootloader. Only the SSCM can disable censorship by writing the private pass-
word to the appropriate SSCM registers. With censorship enabled, the chips
flash memory appears as the same repetition of a 16 byte sequence (the first
16 byte in memory) to any code reading it. Writes to the SSCM password
register are only allowed in privileged context and thus are prohibited in the
secondary bootloader.

private uncensored In this configuration, the device is uncensored, meaning
that flash memory is accessible from any context (i.e. from the executing sec-
ondary bootloader). The on-chip bootloader compares the private password to
the password stored in shadow flash. Knowledge of this password is sufficient
to access the devices memory.

private censored Here, only the SSCM can uncensor the flash memory and
check the password. Thus, after the secondary bootloader download is com-
pleted, the SSCM writes the SSCM password registers, sets a timer and checks
for success when the timer runs out. If the password is incorrect, the device
halts. [O’F20] publishes an attack on how to bypass this configuration.

SC
CW

55aa (uncensored) !55aa (censored)

55aa (private PW) private uncensored private censored
!55aa (public PW) unprotected chip lockout

3 Attack

In this Section, we expose the chips bootloader and reset to various fault injec-
tion scenarios.

3.1 BAM attack

In this section, we analyse a critical section of the BAM code and detail our
attempts attacking it. Along with confirming the attacks on the private pass-
word described in [O’F20], we found several interesting anomalies, which we
summarise here. Offsets are given from the start of the transmission of the last
password byte (at a 19200 baud rate). Since a data byte (10 bits over the wire)
transmitted over a 19200 8n1 baud connection takes 520.83µs, the offsets given
here fall roughly around 8µs of the reception of the last byte.

3.1.1 Bootloader analysis

Figure 2 shows part of the bootROM (16kB mapped at FFFF C000) which deter-
mines the boot configuration and performs the password check. As we can see
from the code, the public password is hard-coded. One idea offered in [O’F20]
to bypass the chip lockout scenario is to provide the correct private password
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and glitch the first se beq branch instruction. This would cause the control
flow to move into the private password path, and possibly uncensor the device.

Figure 2: BAM code which handles censorship control

3.1.2 public uncensored

Glitch password 528.4µs; 430V ; 1mmCCW : A first straightforward configu-
ration to attack is the public uncensored scenario. Since the device is already
unprotected, this attack is only valuable for exploring the attack surface. We do
this by providing the private password (12345600 87654300 in our case), and
injecting a glitch. Indeed, with a pulse at around 528.4µs, the SBL downloads
and executes and can read all memory. This attack simply gives us an idea of
when the first check in the critical BAM section occurs.

3.1.3 public censored

A first idea, offered in [O’F20], is to enter the private password and inject a glitch
to make the BAM code enter the private password. We managed to glitch the
chip to accept the private password and continue to the download sequence.
Here, we discern two scenarios (with the glitch offset differing 750ns).

1. Glitch to private 528.125µs; 400V ; 1mmCCW : the BAM code accepts
the password, but does not execute the secondary bootloader. This is the
same behavior that occurs when a private censored chip encounters a false
private password. We assume we glitched the password configuration of
the chip, somehow causing a change in the first se beq shown in Figure 2,
now taking the private password branch.

6



2. Glitch public 528.750µs; 409V ; 1mmCCW : the BAM accepts the pro-
vided password and executes the bootloader but the flash memory is still
censored. This behaviour is anomalous, since it seems the bootloader is
still configured as chip lockout (e.g., the SSCM has not uncensored the
flash memory), however allows the download with the private password.
We speculate the BAM still takes the public password branch here, but
the glitch affects one of the latter se bne or se beq instructions.

Regardless of the failure to disable censorship, an attacker would not know
the private password in a realistic scenario and would still have to guess it
somehow. Unless it has low entropy (e.g., all ff or 00), this task is unfeasible
over the slow UART or CAN connection. Moreover, a password including either
ffff or 0000 is invalid and automatically rejected.

3.2 Power-on Attack

In this section, we take a different approach and analyse a power consumption
side channel to set up a successful EMFI attack.

3.2.1 Power analysis

In many chips, a Power-On Reset (POR) pin invalidates all registers and forces
the chip into a hard reset, as would be the case when power is first applied to the
chip. Sadly, this is not the case on this chip, with the RESET pin only forcing
a soft reset and thus not triggering any censorship queries. According to the
datasheet, a POR is required before any changes in the shadow flash will take
effect. Thus, we use the GIAnT [Osw16], an open source voltage fault injection
tool, to control the input voltage (on Vdd) directly - letting it drop below 2V to
force a POR and thus reload the censorship settings. We believe this is where
[O’F20] goes astray in their boot power analysis, since they only perform a soft
reset of the chip - which does not reload any censorship configuration.

This enables us to analyse the fluctuations in core voltage upon boot, giving
us an insight into its inner workings. As both SC, CW and the private password
are stored in the shadow flash, we expect the loading of these registers to require
a lot of power. We could obtain this side channel by placing a simple 50 Ohm
shunt resistor between Vss and the ground of our power supply. To eliminate
any external influences on our experiment, we desoldered the chip and connected
only the reset pin, Vdd and Vss. Alternatively, since we do not connect any
capacitors which mitigate voltage fluctuations, we can observe the voltage on
the Vdd line upon reset on the oscilloscope, as shown in Figure 3. It shows a
clear area of activity around 500µs after applying the core voltage. This gives
us first zone of interest to explore with fault attacks. While we could equally
obtain this side channel by placing a simple H-Field Probe 2 over the chip and
analysing its electromagnetic emanations, we gain the advantage here of leaving
the full chip surface available, crucial for reliably injecting EMFI pulses.

2One we have used before is the NewAE CW505 Planar H-Field Probe
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(a) Core voltage on power-on (b) Core voltage during the critical section

Figure 3: Core voltage fluctuation on power-on and zoomed in on the critical
section

EMFI trigger An EMFI attack requires a precise trigger point from which
to initiate the glitch. As described earlier, we cannot trigger on the reset pin
since this only performs a soft reset and does not reload censorship status.
Furthermore, we tried triggering on the Vdd pin surpassing the brownout voltage
detection ( 2.8V ), but noticed the start offset of the critical section shown in 3
still varies too much for a precise trigger. Thus, we use the Analog-to-Digital
Conversion (ADC) module on the commonly available Teensy 4.0 3 to detect
when the area of high activity shown in 3 commences. We do this by triggering
off the start of the critical section (occurring roughly at 520µs after POR),
characterised by the following sequence (with Vdd = 3.3V ): 1. V dd = 0V : this
holds the chip under reset. 2. V dd > 2.8V : this initiates a POR, with this phase
taking on average around 500µs. 3. Steep drop in voltage (V dd < 2.69V ).

We trigger after a certain low treshold has been reached on Vdd. This voltage
is arbitrary since it depends on the nominal Vdd, but it ensures an accurate
trigger for the critical section. Note that this trigger methodology relies on the
core voltage fluctuating, which is only possible on a desoldered chip without
any external capacitors to stabilise Vdd. Should the attack be reproduced on
an ECU for instance, one could create a setup placing an H-Field Probe over
the chips surface, as described in Section 3.2.1. The EMFI injection tips we
use are the standard tips delivered with the NewAE Chipshouter (1mmCW,
1mmCCW), with only the winding direction differing.

V-FI Chunk leakage 618− 620.75µs; triggered from POR (V-FI) Since we
control Vdd with the GIAnT, we were all set to perform an initial scan of the
attack surface by voltage glitching. This already yielded some promising results:
the glitch makes the censorship mechanism return a different 16 byte chunk of
memory. It seems that the SSCM is configured to take a memory chunk from
arbitrary flash memory, instead of from address 0. We did not investigate further
to understand how the SSCM selects which chunk to return. Though occurring
plentifully (success rate of 20-40% in this offset range), we could not entirely

3https://www.pjrc.com/store/teensy40.html
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Figure 4: Successful glitch pulse at the end of the critical section (short pulse
at 75µs in this sample)

disable censorship, leaving us wanting.

EMFI Chunk leakage 90µs; 460V ; 1mmCCW When targeting this area
with EMFI, we observe the same phenomenon. With success rates of up to
70%, we note that this attack occurs very frequently when correctly positioned
on the chips surface, regardless of the injection tip, glitch voltage.

Censorship disable 89µs; 300V ; 1mmCW With these parameters we man-
aged to prevent the chip enabling the censorship mechanism. Thus, we could
simply download the bootloader using the public password and access the un-
censored memory. We note that the success of the attack is very sensitive to the
exact glitch parameters used, as well as the position of the injection tip, only
occurring rarely. The glitch timing falls near the end of the critical section, as
shown in Figure 4.

Once we can bypass the censorship mechanism we have full access to the
flash memory. All that is left then is to execute a secondary bootloader which
uploads new values of SC and CW to the shadow flash to uncensor the device.

4 Discussion

Attack causes Though it is difficult to figure out exactly what the electro-
magnetic pulses induce in the chip, we speculate it might be the setup of the
SSCM. Since only an exact value (i.e., 55aa) disables the censorship, while all
other values enable it, it seems plausible that the device is by default configured

9



as censored. When subject to an EMFI pulse at 90µs, the device changes which
16 byte chunk is returned upon a read of a censored area, indicating setup ac-
tivity of the SSCM. The glitch disabling censorship falls 1µs before this. Here,
we discern two scenarios: 1. The glitch actually causes the read of CW to return
55aa. This would automatically disable censorship on the device. Glitching a
flash word to appear exactly as 55aa seems unlikely, but only further EMFI
experiments on this device could completely rule out this possibility. 2. To us, a
more realistic scenario would be that the read of CW still returned the original
value (i.e., !55aa), but the glitch caused a fault in the SSCM when setting up
censorship, leaving the device uncensored.

Public vs Private One could see the attack we publish here as a mere exten-
sion of the attacks published in [O’F20]. In contrast, because of the intricacies
of our approach, we believe the reader should treat it as a standalone attack.
Evidence for this are the failed attempts at breaking censorship in a chip con-
figured to use the public password in [O’F20]. As we mentioned earlier, [O’F20]
triggered both their power analysis and EMFI attacks on the RST OUT pin. How-
ever, this does not reload the censorship configuration and registers. Glitching
from POR provides little to no feedback to go off, making any fault injection
attack a non-trivial operation. Equally, the rarity of the glitch which finally
disables censorship shows the difficulty of this particular attack.

Parameter search Many authors have attempted to devise algorithms to
optimise searching the parameter space (e.g., [PWMM23,BFP19]). With more
intricate fault injection techniques (e.g., Optical Fault Injection over EMFI over
V-FI), this problem becomes only more and relevant. The results of this pa-
per lean towards a multi-faceted approach, comprising of both code analysis and
side channel analysis and the use of several fault injection techniques altogether.
Indeed, after only observing partial results when glitching the BAM code, we
needed to step back and widen the attack surface. Genetic algorithms which
efficiently search the parameter space as proposed in [PWMM23,BFP19] are de-
pendent on anomalous outputs of the chip under attack. Often, an obvious offset
to start experimenting with glitches (e.g., Figure 3) turns out to yield results
quickly (as we noticed by voltage glitching the critical boot section). However,
when it hits the physical limits of the fault injection technique (i.e., voltage fault
injection being too inaccurate), we must progress to a more intricate technique.
Taking the first step with a more generic fault injection technique allows us to
pinpoint an area of interest quickly, since successful faults with a more targeted
approach (EMFI) occur far less frequently. We also note that a given injection
tip (CCW), though also yielding promising results, is equally limited in com-
pletely disabling censorship, which we only attained with a clockwise-wound
injection tip, and at a much lower voltage.

This all to show that, while a genetic algorithm certainly has its place in
fault injection techniques, in our case a fully automated approach would not have
sufficed. Once we hit the physical limits of the employed technique, we must
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step back, manually intervene and change out some hardware components if not
resort to a more accurate injection technique. Therefore, we believe a hybrid
algorithm which takes into account results from several injection techniques
would be suitable here. We leave the design and implementation of this up to
future research.

5 Conclusion

In this paper, we propose an EMFI attack to disable censorship on a NXP
SPC5606B chip configured to use the public password, which is described as
the unrecoverable chip lockout scenario in the datasheet. We explore attacks
on a critical code section of the BAM (Boot Access Module), the module which
handles the boot process. Injecting EMFI pulses here cause the chip to accept
the private password even when configured to use the public password. However,
censorship remains enabled - causing the chip to return the same 16 byte chunk
for any flash memory read. We then establish a power consumption side channel
and identify a high activity section during the chip startup. Both voltage - and
EM pulses at this offset make the censored device return a different 16 byte
chunk of memory upon a read operation - pointing to a fault occurring in the
module which handles the censorship. Finally, an EMFI glitch falling just prior
to this offset disables the censorship and gives us complete access to the chips
memory. Our attack shows the importance of using a multi-faceted approach
which performs a full scan of the attack surface with different fault injection
mechanisms, narrowing down the parameter search space along the way.
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